Sunday, 22 December 2024
Sunday, 22 December 2024
import time import requests from bs4 import BeautifulSoup import pyttsx3 from datetime import datetime, timedelta # Text-to-speech engine engine = pyttsx3.init() # Function to get economic event data def get_economic_events(): url = ‘URL_OF_THE_ECONOMIC_CALENDAR_PAGE’ response = requests.get(url) soup = BeautifulSoup(response.text, ‘html.parser’) events = [] # Example: extract event name, time, and other details for event in soup.find_all(‘div’, class_=’event-class’): event_name = event.find(‘span’, class_=’event-name-class’).text event_time = event.find(‘span’, class_=’event-time-class’).text event_datetime = datetime.strptime(event_time, ‘%H:%M’) # Adjust format based on the website events.append({‘name’: event_name, ‘time’: event_datetime}) return events # Function to trigger alert def trigger_alert(event): alert_message = f”{event[‘name’]} data will be released in 15 minutes.” engine.say(alert_message) engine.runAndWait() # Function to update alert after event release def update_alert(event, result): result_message = f”{event[‘name’]} data is released. The result is {result}.” engine.say(result_message) engine.runAndWait() # Main loop def main(): events = get_economic_events() while True: current_time = datetime.now() for event in events: time_to_event = event[‘time’] – current_time if timedelta(minutes=0) < time_to_event <= timedelta(minutes=15): trigger_alert(event) time.sleep(60) # Check every minute elif time_to_event < timedelta(minutes=0): # Event has passed # Example: Fetch the result from the same or another webpage result = 'Sample Result' # Replace with actual scraping logic update_alert(event, result) events.remove(event) # Remove event after processing time.sleep(300) # Check for new events every 5 minutes if __name__ == "__main__": main()